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Letters

Comments on “Comparison of the FFT Conjugate
Gradient Method and the Finite-Difference Time
Domain Method for the 2-D Absorption Problem”

TAPAN K. SARKAR

The objective of this letter is to point out certain wrong
assumptions that the authors' have made about the FFT con-
jugate gradient method. Based on these erroneous assumptions,
they made certain statements which are quite meaningless. Per-
haps the statements made come frem lack of acquaintance with
recent publications on the conjugate gradient method (CGM).
There are four specific comments.

1) Borup et al. claim that “.. . FFT-CGM is nothing more than
an efficient means of solving PM-MOM linear system....” This
statement is wrong. The fundamental misconception that the
authors have is the assumption that the conjugate gradient method
is only applicable to matrix equations and that it is too special-
ized for a pulse expansion and point matching. The following
explanation illustrates why it is not so.

The application of the conjugate gradient method to solve a
matrix equation is just a special case of the application of the
conjugate gradient method to solve an operator equation. This is
because, when one applies the conjugate gradient method to solve
a matrix equation, the expansion and weighting functions have
already been preselected. For the problem that Borup ef al. have
solved, the expansion and weighting functions were pulse expan-
sion and point matching; however, in general, this need not be
the case [2]. They solved the resulting matrix equation by the
conjugate gradient method.

Now if one follows the procedure [3], [4] of applying the
conjugate gradient method directly to the operator equation, the
first difference that one observes is that the expansion and
weighting functions evolve during the iteration and they are quite
different from the previous case. The expansion functions in this
implementation are a function of the initial guess made for the
unknown solution. If the initial guess is assumed to be zero, then
the expansion functions that evolve during the iterative solution
of AX=Y are, respectively, 4*Y; (4*A) A*Y; (A*A4)?4*Y; and
so on. The weighting functions are AA*Y; A(A*A)?4*Y - - - . Here
A* is the adjoint matrix or operator. For a more detailed descrip-
tion and a better appreciation and basic understanding of the
conjugate gradient method, the authors may like to read the
turorial paper [5]. Also, the approach just described is similar to
those of [6] and [7]. It is also interesting to point out that the
conjugate gradient method is sometimes called the method of
moments, as the expansion functions are the generalized mo-
ments of Y for a self-adjoint operator 4 [7]. It is established now,
beyond a reasonable doubt, that CGM can exist in various forms.
The basic difference in the exact solution of a matrix equation
and an approximate solution of an operator equation can be
found in [23] and [20].
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Now let us look at the numerical implementation. In the
conventional pulse expansion utilized in the matrix methods, the
kernel 1s integrated over the domain of existence of the basis
function. In the numerical implementation of the FFT and the
conjugate gradient method [4], the functions are sampled at N
equidistant points and they are assumed to have the sampled
value over each FFT bin. This is what a MOM practitioner
would term a delta function expansion. Regarding the weighting
functions, the weighting functions are approximated in a similar
fashion; hence it is a sort of point matching. So from a philo-
sophical point of view, most numerical methods programmed on
a computer perform some form of point matching; hence to
conclude from that that all forms of the conjugate gradient
method are simply pulse expansion and point matching does not
make any sense!

Finally, in order to conclude that the conjugate gradient method
does not converge, that the rate of convergence is very slow for
the solution of a matrix equation, or that it produces unstable
results, one has to demonstrate that another method, such as
Gaussian elimination or the nonconvergent spectral iterative
method, yields the correct solution. This Borup er al. have not
done. Therefore, it puzzles me on what grounds they conclude
that the conjugate gradient method yields unstable results. It is
my conjecture that had they used Gaussian elimination instead of
the conjugate gradient method, they would have obtained identi-
cal unstable results. Therefore, to put the blame on a method
rather than on an incorrect choice of expansion and weighting
functions really does not make any sense.

It is important to point out that in the solution of very large
problems with over 10000 unknowns the conjugate gradient
method produced quite reliable results [4], [8]. So the fundamen-
tal problem lies in the choice of basis functions and not with
FFTCGM. One can use FFTCGM without pulse expansion and
point matching as described in [4].

2) By solving the matrix equation by FFT and CG, the full
potential of the FFT is not utilized. In implementation of the
FFT and the conjugate gradient method in [4], the FFT is utilized
not only to compute the convolution between the Green’s func-
tion and the other functions, but also to compute the derivative
operation that exist in the charge term of the electric field. The
derivative operation is converted to a multiplication in the trans-
formed domain; hence the error incurred in the finite difference
approximations for the electric field operator is minimized, par-
ticularly for the solution of the current on electrically small
bodies. Hence what is known as FFT CGM does not fit the
description of Borup et al. Any example presented to show that
the matrix implementation is similar to the operator implementa-
tion should deal with the TE case and not the TM case.

3) The authors’ claim that they developed the FFT-CGM
perhaps arises from the lack of knowledge of published literature
in other areas such as signal processing. For example, the appli-
cation of FFT and CGM can be found in the works of Fineup
[9]. where they applied the FFT-CGM to solve a matrix equation.

4) Borup et al. also state (p. 385) that “CGM is a popular
means for solving linear systems encountered in application of
MOM....” Again, this statement is incorrect. The CGM has
been applied in [2]-[6] directly to the solution of operator equa-
tions and hence one need not form or even store any matrices.
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Also, for MOM no mathematical proof is readily available that
states as the number of expansion and weighting functions ap-
proaches infinity (pulse basis and point matching or for any
other expansion functions) one obtains an exact solution. How-
ever the monotonic convergence of the solution (case B[3]) or of
the residuals (case A[3]) is guaranteed for CGM. There is no
equivalence of case B of CGM [3] for matrix methods.

In summary, what Borup et a/. have shown in that for 2-D
biological problems the pulse expansion point matching method
in the frequency domain is inferior to the finite difference time-
domain method. However to conclude that time domain methods
are more accurate or that the FFT CGM does not work would be
totally nonsensical.

it is important to point out that pulse expansion point match-
ing does provide excellent results for the TE case if it is imple-
mented intelligently (i.e., how the source integration points and
the field matching points are chosen). Several papers and reports
are available in the antennas and propagation literature that
actually implement it.

There are other problems with the ordinary conjugate gradient
method, such as squaring of the condition number and hence
slower convergence, which can be partially corrected as outlined
in [10]. However, when the conjugate gradient method is applied
intelligently and programmed correctly on a computer having
enough bits of information to represent the problem, the method
works without any problem and provides accurate results for
both frequency-domain and time-domain [11], [12] problems.

Reply? by D. T. Borup and O. P. Gandhi’

Many of the comments made by Sarkar above may also be
found in his response to our comments [13] concerning his paper
[4]. Unfortunately we were not allowed to reply at that time and
so we gratefully welcome this opportunity.

Our response is divided into two parts. First, we would like to
point out several conclusions that Sarkar attributes to us that do
not appear in our paper. These misrepresentations of our work
are particularly troubling and indicate either that he does not
understand our paper or that he did not read it carefully. Then
we would like to consider more carefully the amazing claim that
his algorithm described in [3] and [4] is the solution of an
operator equation rather than a matrix equation. This statement
is quite meaningless of course since all finite-dimensional linear
operator equations are equivalent to some finite-dimensional
matrix equation. Obviously, the computer cannot perform oper-
ations in an infinite-dimensional space and so there is no distinc-
tion between a linear operator and a matrix as far as the
computer is concerned. We will show that this misunderstanding
is due to the way in which Sarkar derives his algorithm. In [3] and
[4], the effect of the approximation of the continuous Fourier
transform with the discrete Fourier transform is not discussed
adequately. This clever derivation avoids explicitly stating the
basis and testing functions that arise in the discretization process,
giving the illusion that the continuous operator equation is being
solved. In fact, Sarkar’s method is just another example of a
matrix moment method. It results from the expansion of the
unknown wire current with a finite, periodic basis followed by
point matching. The resulting matrix equation is then solved
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by the CG method. The Toeplitz form of the matrix is exploited
by the use of the FFT algorithm and the discrete convolution
theorem to provide an efficient means of computing the matrix
products needed during the CG iterations. Thus, there is no
philosophical difference between Sarkar’s algorithm and our ap-
proach [1]. They differ only in the selection of the basis func-
tions.

The following is a list of claims that Sarkar incorrectly attri-
butes to our work along with a description of our actual conclu-
sions.

1) In the second paragraph Sarkar quotes from our paper that
the “...FFT-CGM is nothing more than an efficient means of
solving the [pulse basis method of moments (PB-MOM)] linear
system...,” from which he concludes that we are asserting that
the CG method is only applicable to linear systerns obtained
from the PB-MOM. If we actually held this belief our under-
standing of the CG method would be poor indeed and Sarkar
would be quite correct in suggesting that we read his tutorial
paper. Actually the statement is taken out of context. If this
statement is read in context, it is quite clear that our intent was
to stress the fact that, in our method, the FFT-CGM is nothing
more than an efficient means of solving the matrix that we obtain
via the PB-MOM. From this we conclude that the errors we
observed in the transverse electric (TE) cylinder solutions cannot
be attributed to the FFT-CGM and that any fundamental prob-
lem with the pulse basis formulation will also plague our solu-
tions.

2) In paragraph six, we are accused of putting the “...blame
on a method [the CG method] rather than on an incorrect choice
of expansion and weighting functions....” This comment is
particularly unsettling since the main conclusion of our paper is
that the discontinuities introduced by the pulse basis produce
fictitious charge sources that degrade the accuracy of the numeri-
cal solution for the TE illumination of dielectric cylinders. In
other words, we quite clearly put all the blame on the basis
functions. The only observation that we make concerning the CG
method is that the rate of convergence can be quite slow for the
matrix obtained from the PB-MOM for the TE polarization. This
is in contrast to the transverse magnetic (TM) polarization for
which adequate convergence is obtained in a number of iterations
far less than the number of unknowns. This is an important
consideration in the comparison of the relative efficiency of our
FFT-CG method and the finite-difference time-domain (FD-TD)
method. Recently, we have found that this problem can be
alleviated by replacing the pulse basis with the sinc basis to be
described shortly. Apparently, use of the sinc basis results in a
matrix with clustered eigenvalues and a smaller condition num-
ber. This results in rapid convergence of the CG iterations for
both the 2-D TE and 3-D dielectric scattering problems. Further
gains in numerical efficiency can be obtained by using the
biconjugate gradient method [14] as suggested by Sarkar.

3) The statement in paragraph six that our results would be
unchanged if Gaussian elimination were used was already
acknowledged by us. We quite clearly stated that “...this method
of solving [the PB-MOM linear system] introduces no additional
error over more traditional methods such as LU decompo-
sition....”

4) In comment 3, Dr. Sarkar states that we claim to be the
originators of the FFT-CG method. The fact is that the first
application of this combination to electromagnetic scattering
problems that we are aware of is [15]. However, we have never
claimed any special monopoly on the idea. The only place we
find the claim of novelty is in the first paragraph of Sarkar er al.
[4].
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Most of Sarkar’s remaining comments concern his distinction
between operator equations and matrix equations. In the next
section we will demonstrate that the method in [3] and [4] is a
matrix moment method in the sense that basis and testing func-
tions are preselected and employed to reduce the integral equa-
tion to a matrix equation. The only role that the CG method
plays in Sarkar’s algorithm is to solve this matrix equation. The
solution obtained would be unchanged if another method such as
Gaussian elimination were used.

Consider the Fredholm integral equation of the first kind with
shift invariant kernel
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For the wire antenna problem, f is the unknown wire current, y
is the incident field excitation, g is the Green’s function, and L
is the wire length.

Because we seek a solution with finite supporton [— L/2, L /2],
the limits of integration can be extended to + co. Introducing the
support function

L L
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we get the following problem: Find f(x) with support on
[— L/2, L/2] that solves
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The procedure for solving (2) by the moment method begins by
expanding f(x) in a finite-dimensional basis. The finite support
constraint on the solution can be enforced at this point by
selecting a finite support basis expansion (e.g., piecewise con-
stant, piecewise linear, etc.); however, in order to arrive at
Sarkar’s algorithm, we introduce the grid nodes illustrated in Fig,
1 and use the basis expansion
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where the constraint f, =0 for N—1<|m|<M has been en-
forced by defining the support sequence ¢, =¢(mA). Notice,
however, that (3) is periodic with period (2M —1)A. Thus, the
use of (3) introduces fictitious copies of the wire current. How-
ever, as M becomes large, the coupling between these copies is
reduced due to the decay of the Green’s function. Sarkar suggests
the arbitrary choice, M =2N. A means of eliminating these
fictitious copies altogether will be described shortly.
By a trivial step

1 M-1 M-1

> )3

M=l Syt m= "

roN —i2amh)/2M-1)
f( X ) - tmfme
. ez(lw/\ VIIAQM 1)

1 M—1
Z f;el(ZW/\\’)/(A(Z/\/I—I))
=-~M+1

(4)

IM-1,

where f; is the discrete Fourier transform (DFT) of the zero
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Fig. 1 Geometry of the equally spaced sample points used to define the
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where g, equals the continuous Fourier transform of g(x) sam-
pled at 2wk /(A(2M —1)).

To complete the numerical solution, the equality of (6) is
enforced at the grid nodes (point matching) to give the matrix
equation

P M1

gl Foa —1Q2mnk)/(2M—1)
Z fi&e '™
2M -1, .50

(7)

Yo =

or

);/I=t/l DFTiﬁl{DFT{ t”lf"l}l\gk}n' (8)

Equation (8) defines the algorithm used by Sarkar to compute the
matrix products needed in the implementation of the CG itera-
tions. In order to find an simplified expression for the matrix
equation implicit in (7), substitute (3) into (7) to get
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Equation (10) is then the matrix equivalent of the algorithm
defined in (8). In Sarkar’s algorithm, the matrix equation (10) is
now solved iteratively by the conjugate gradient method. Rather
than explicitly forming the Toeplitz matrix (10), the FFT al-
gorithm is used to rapidly compute the matrix products needed
during the CG iterations by utilizing the algorithm defined in (8).
The adjoint matrix products, which are also needed to implement
CG, can also be computed by simply replacing §, with its
complex conjugate in (8).

We have now shown that Sarkar’s algorithm can be derived by
applying the method of moments to (2) using the basis defined in
(3) and point matching to reduce the integral equation to a
matrix equation. In Sarkar’s approach, the CG method is used
only as a means of solving the matrix equation (10). The same
result would be obtained if another method were used such as
Gaussian elimination. The advantage of using the CG method is
that only matrix products are needed in its implementation. This
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allows the use of the FFT by algorithm and obviates the storage
of the matrix.

From the following development it should now be clear that
Sarkar’s distinction between using the CG method to solve an
matrix equation versus an operator equation is meaningless. Also,
his claim that the basis is not preselected but evolves during the
iteration process is incorrect. It is true that at the kth step of the
CG method the iterate f* is found by minimizing the residual
crror

2 2
711> =”Afk - y”z
over the Krylov set (see for example Axelsson [16])
Se={ A%y (4*4) Ay, - (4*4) a*p}.

However, this has nothing to do with the basis functions used to
discretize the integral equation into a matrix equation. As we
have shown, the preselected basis set used implicitly in Sarkar’s
approach is exactly that given in (3). This fact is obscured in his
development.

In [3] and [4], the claim is made that proof of the convergence
of the CG method is somehow a proof of the convergence of the
numerical solution. This would certainly be true if the CG
method were applied directly to the continuous integral equation
without the intermediate step of discretization. Unfortunately
this is not possible and so the only alternative is to discretize the
continuous integral operator into a finite-dimensional matrix,
Proofs concerning the convergence of the numerical solution
must certainly consider how well the basis expansion approxi-
mates the unknown solution in the limit as the sample interval,
A, goes to zero. An example of such a proof can be found in [17].

An important additional point needs to be made. If Sarkar had
noticed that his formulation (8) can be reduced to (10), he would
have realized that, in effect, the zero pad length M can be limited
to infinity. Since (10) is in the form of a discrete convolution on
[~ N+1, N—1], it can be solved by the FFT-CG method using
FFT’s of length 4N —1 with no wraparound aliasing for arbi-
trarily large M. The calculation of the discrete kernel g, need be
computed only once using a single 2 M —1 point FFT prior to the
iterative solution of (10). This allows the periodic copies of the
current to be separated by an arbitrarily large distance without
increasing the FFT length needed during the CG iterations.

Now consider what happens if we take the limit M — oo.
Equation (3) then becomes

N-1
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which is the well-known sinc basis expansion. The advantages of
sinc basis methods versus polynomial methods are discussed by
Stenger in [18]. In this monogram, Stenger derives a class of
sinc-based numerical methods for problems ranging from inter-
polation and quadrature to the solution of partial differential
equations and integral equations. The utility of the sinc basis for
the solution of scattering integral equations is further supported
by the work of Johnson er al. [19], in which the sinc basis and
FFT are used to solve the acoustic scattering integral equations
that arise in ultrasound imaging.
The formula for the discrete kernel (11) limits to
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where the * denotes the convolution operation. Thus, the use of
(10) with the kernel defined in (13) is equivalent to limiting M to
infinity, which removes the fictitious copies of the current. Equa-
tion (10) can then be solved with no wraparound aliasing using
4N —1 point FFT’s and the CG method.

An important limitation of Sarkar’s algorithm occurs in the
2-D and 3-D electric field integral equation cases for which g(k),
the spatial Fourier transform of the Green’s function, is singular
on the Ewald surface, |k|=k,. This causes problems in the
evaluation of (11). It has been suggested that this problem can be
obviated by adding a small imaginary part to &k, [13], [20]. Our
numerical experiments indicate that this is a highly unsatisfactory
remedy. In particular, solutions obtained in this way for the 2-D
circular cylinder problem do not agree at all with analytic solu-
tions. The importance of correctly including the contribution of
the scattered field due to this singularity is obvious in the light of
the well-known fact that the externally scattered field is com-
pletely determined by the transform of the current on the Ewald
surface [21]. The problem with using (11) is that it consists of a
mid-point rule approximation of the continuous integral (13)
which has a singular integrand (for the 2-D and 3-D Green’s
functions). The slow convergence of the approximation (11) as M
goes to infinity means that very high resolution grids must be
used to obtain an accurate quadrature. It is indeed fortuitous that
Sarkar chose the wire antenna problem for his test case for which
such singularities do not exist. Fortunately, the sinc basis method
does not suffer from this problem since the singularity is in-
tegrated analytically in (13). We have derived analytic expres-
sions for the 2-D and 3-D equivalents of (13) and have imple-
mented this approach for calculating scattering and absorption
by arbitrarily inhomogeneous lossy dielectrics. Comparison with
analytic solutions for concentrically layered spheres of biological
tissues exposed to a plane wave have verified the accuracy of the
method. We have also successfully solved inhomogeneous man
models embedded in a 72Xx24Xx12 grid. Of these 20000 grid
nodes, 6000 define the inhomogeneous man models. The remain-
ing points are in air and fill out the cuboid grid on which the 3-D
FFT operates. This then results in 18000 unknown electric field
values. Typical run times for this model are between 7 to 14
minutes on the Cray-2 supercomputer at the University of Min-
nesota. A complete description of the algorithm and results is in
preparation for publication [22)].
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In the above' paper, expressions (1), (2), and (3) appear to be
correct only if the physical temperature T, of the tuner is equal to
the standard temperature T, =290 K. The expression (1) for
T, # T, = 290 K should read

T,
Fm(rm) =ﬁ[0‘r\(rm)‘1] +1

F(S5) -1

+op (L) F(I) -1+ G(T)

(1)

using the notation of the paper. Generally valid versions of
expressions (2) and (3) follow in a straightforward manner. The
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Fig 1 Equivalent circuit of a receiver with nomdeal isolator at its input.
error caused by the limited validity of expressions (1), (2), and (3)
in the subject paper may be quite significant, even for room
temperature measurement. For instance, for the tuner losses of
1.5 dB (worst case in the example discussed), each kelvin of a
difference between physical temperature of a tuner and standard
temperature 7;, will contribute 0.4 K of an error.

Also, the remaining nonreferenced expressions in the subject
paper (i.e., (5) through (9)), which deal with the noise tempera-
ture of a receiver with isolator at the input, are derived in the
Appendix ((Al) through (Al14)) in an unnecessarily complicated
way. In order to demonstrate this point, let us refer to the
equivalent circuit of Fig. 1. This equivalent circuit is valid for a
receiver preceded by an isolator having S, =0 and a physical
temperature 7. In this case, a nonideal isolator is modeled by a
cascade connection of lossless reciprocal two-port, followed by
an ideal isolator and lossy reciprocal two-port.

It has been brought to the attention of the authors of the
subject paper [1] and also discussed in some greater detail in [2]
that at plane B (refer to Fig. 1), the noise parameters of such a

system are
T,+T,

Ton=TF(T,=0), T,=0, N= 476“““. (2)

It follows immediately from the invariant properties of T, and
N [3] that at plane A the noise parameters are

Tmin=TI€l(rg=FI*)=T1§(rg=0)’ Fopt_rt*’
7;+Tm1n

The relations (2) and (3) follow in a straightforward manner
from those published many years ago [4], [S]. The expressions %),
(7), and (8) in the subject paper can be easily obtained by
substitution of noise parameters given by (3) into standard ex-
pression for equivalent noise temperature (noise figure).

The relations (3) also clearly demonstrate why, for a full noise
description of a receiver with isolator (S, = 0) at the input, only
single noise measurement will suffice if the input reflection
coefficient T, and physical temperature of the isolator are known.

Reply 2 by G. Martines and M. Sannino3

1. Premise

Before replying in detail to the above comments, we would like
to reassure experimenters working in the field of transistor noise
measurements that the questions raised do not affect to any
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