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Letters

Comments on “Comparison of the FFT Conjugate

Gradient Method and the Finite-Difference Time

Domain Method for the 2-D Absorption Problem”

TAPAN K, SARKAR

The objective of this letter is to point out certain wrong

assumptions that the authorsl have made about the FFT con-

Jugate gradient method. Based on these erroneous assumptions,

they made certain statements which are quite meaningless. Per-

haps the statements made come from lack of acquaintance with

recent publications on the conjugate gradient method (CGM).

There are four specific comments.

1) Borup et al. claim that “... FFT-CGM is nothing more than

an efficient means of solving PM-MOM linear system . . . .“ This

statement is wrong. The fundamental misconception that the

authors have is the assumption that the conjugate gradient method

is only applicable to matrix equations and that it is too special-

ized for a pulse expansion and point matching. The following

explanation illustrates why it is not so.

The application of the conjugate gradient method to solve a

matrix equation is just a speciaf case of the application of the

conjugate gradient method to solve au operator equation. This is

because, when one applies the conjugate gradient method to solve

a matrix equation, the expansion and weighting functions have

already been preselected. For the problem that Borup et al. have

solved, the expansion and weighting functions were pulse expan-

sion and point matching; however, in general, this need not be

the case [2]. They solved the resulting matrix equation by the

conjugate gradient method.

Now if one follows the procedure [3], [4] of applying the

conjugate gradient method directly to the operator equation, the

first difference that one observes is that the expansion and

weighting functions evolve during the iteration and they are quite

different from the previous case. The expansion functions in this

implementation are a function of the initial guess made for the

unknown solution. If the initial guess is assumed to be zero, then

the expansion functions that evolve during the iterative solution

of AX= Y are, respectively, ,4*Y, (A* A),4*Y, (,4* A)2A*Y, and

so on. The weighting functions are AA*Y, A (A*A ) 2A*Y. . Here

A* is the adjoint matrix or operator. For a more detailed descrip-

tion and a better appreciation and basic understanding of the

conjugate gradient method, the authors may like to read the

turorial paper [5]. Also, the approach just described is similar to

those of [6] and [7]. It is also interesting to point out that the

conjugate gradient method is sometimes called the method of

moments, as the expansion functions are the generalized mo-

ments of Y for a self-adjoint operator A [7]. It is established now,

beyond a reasonable doubt, that CGM can exist in various forms.

The basic difference in the exact solution of a matrix equation

and an approximate solution of an operator equation can be

found in [23] and [20].

bl.inu,ctnpt t-ccc]vcd JLIIIC 8, 19X7

The uuth,>r IS w[th the Ikpwtmcnt of Elcctnc!al Engineering, Syracuse

UIIIVCI slty, S: I-:lc’LIw, NY 13244-1240

IIEE I.og NL}IIIbL-i- 8717912,

11) T IIorup, D kl Sulllv>m, [ml O P (;wdhl, (EE1: “T/w.r MI{FWLWLJ

‘f/t<tI I 72(// VOI MTT-35. pp 3X3–395. Apr 19X7

Now let us look at the numerical implementation. In the

conventional pulse expansion utilized in the matrix methods, the

kernel N integrated over the domain of existence of the basis

function. In the numerical implementation of the FFT and the

conjugate gradient method [4], the functions are sampled at N

equidistant points and they are assumed to have the sampled

value over each FFT bin. This is what a MOM practitioner

would term a delta function expansion. Regarding the weighting

functions, the weighting functions are approximated in a similar

fashion: hence it is a sort of point matching. So from a philo-

sophical point of view, most numerical methods programmed on

a computer perform some form of point matching; hence to

conclude from that that all forms of the conjugate gradient

method are simply pulse expansion and point matching does not

make any sense !

Finally, in order to conclude that the conjugate gradient method

does not converge, that the rate of convergence is very slow for

the solution of a matrix equation, or that it produces unstable

results, one has to demonstrate that another method, such as

Gaussian elimination or the nonconvergent spectraf iterative

method, yields the correct solution. This Borup et al. have not

done. Therefore, it puzzles me on what grounds they conclude

that the conjugate gradient method yields unstable results. It is

my conjecture that had they used Gaussian elimination instead of

the conjugate gradient method, they would have obtained identi-

cal unstable results. Therefore, to put the blame on a method

rather than on an incorrect choice of expansion and weighting

functions really does not make any sense.

It is important to point out that in the solution of very large

problems with over 10000 unknowns the conjugate gradient

method produced quite reliable results [4], [8]. So the fundamen-

tal problem lies in the choice of basis functions and not with

FFTCGM. One can use FFTCGM without pulse expansion and

point matching as described in [4].

2) By solving the matrix equation by FFT and CG, the full

potentiaf of the FFT is not utilized. In implementation of the

FFT and the conjugate gradient method in [4], the FFT is utilized

not only to compute the convolution between the Green’s func-

tion and the other functions, but also to compute the derivative

operation that exist in the charge term of the electric field. The

derivative operation is converted to a multiplication in the trans-

formed domain; hence the error incurred in the finite difference

approximations for the electric field operator is minimized, par-

ticularly for the solution of the current on electrically small

bodies. Hence what is known as FFT CGM does not fit the

description of Borup et al. Any example presented to show that

the matrix implementation is similar to the operator implementa-

tion should deal with the TE case and not the TM case.

3) The authors’ claim that they developed the FFT-CGM

perhaps arises from the lack of knowledge of published literature

in other areas such as signal processing. For example, the appli-

cation of FFT and CGM can be found in the works of Fineup

[9], where they applied the FFT-CGM to solve a matrix equation.

4) Borup et al. also state (p. 385) that “ CGM is a popular

means for solving linear systems encountered m application of

MOM... .“ Again, this statement is incorrect. The CGM has

been applied in [2]–[6] directly to the solution of operator equa-

tions and hence one need not form or even store any matrices.
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Also, for MOM no mathematical proof is readily available that

states as the number of expansion and weighting functions ap-

proaches infinity (pulse basis and point matching or for any

other expansion functions) one obtains an exact solution. How-

ever the monotonic convergence of the solution (case B[3]) or of

the residuals (case A[3]) is guaranteed for CGM. There is no

equivalence of case B of CGM [3] for matrix methods.

In summary, what Borup et al. have shown in that for 2-D

biological problems thepulse expansion point matching method

in the frequency domain is inferior to the finite difference time-

domain method. However to conclude that time domain methods

are more accurate or that the FFT CGM does not work would be

totally nonsensical.

it is important to point out that pulse expansion point match-

ing does provide excellent results for the TE case if it is imple-

mented intelligently (i.e., how the source integration points and

the field matching points are chosen). Several papers and reports

are available in the antennas and propagation literature that

actually implement it.

There are other problems with the ordinary conjugate gradient

method, such as squaring of the condition number and hence

slower convergence, which can be partially corrected as outlined

in [10]. However, when the conjugate gradient method is applied

intelligently and programmed correctly on a computer having

enough bits of information to represent the problem, the method

works without any problem and provides accurate results for

both frequency-domain and time-domain [11], [12] problems.

Reply 2by D. T. Borupand O.P. Gandhi3

Many of the comments made by Sarkar above may also be

found in his response to our comments [13] concerning hk paper

[4]. Unfortunately we were not allowed to reply at that time and

so we gratefully welcome this opportunity.

Our response is divided into two parts. First, we would like to

point out several conclusions that Sarkar attributes to us that do

not appear in our paper. These misrepresentations of our work

are particularly troubling and indicate either that he does not

understand our paper or that he did not read it carefully. Then

we would like to consider more carefully the amazing claim that

his algorithm described in [3] and [4] is the solution of an

operator equation rather than a matrix equation. This statement

is quite meaningless of course since all finite-dimensional linear

operator equations are equivalent to some finite-dimensional

matrix equation. Obviously, the computer cannot perform oper-

ations in an infinite-dimensional space and so there is no distinc-

tion between a linear operator and a matrix as far as the

computer is concerned. We will show that this misunderstanding

is due to the way in which Sarkar derives his algorithm. In [3] and

[4], the effect of the approximation of the continuous Fourier

transform with the discrete Fourier transform is not discussed

adequately. This clever derivation avoids explicitly stating the

basis and testing functions that arise in the discretization process,

giving the illusion that the continuous operator equation is being

solved. In fact, Sarkar’s method is just another example of a

matrix moment method. It results from the expansion of the

unknown wire current with a finite, periodic basis followed by

point matching. The resulting matrix equation is then solved
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by the CG method. The Toeplitz form of the matrix is exploited

by the use of the FFT algorithm and the discrete convolution

theorem to provide an efficient means of computing the matrix

products needed during the CG iterations. Thus, there is no

philosophical difference between Sarkar’s algorithm and our ap-

proach [1], They differ only in the selection of the basis func-

tions.

The following is a list of claims that Sarkar incorrectly attri-

butes to our work along with a description of our actuaf conclu-

sions.

1) In the second paragraph Sarkar quotes from our paper that

the “... FFT-CGM is nothing more than an efficient means of

solving the [pulse basis method of moments (PB-MOM)] linear

system . . . ,“ from which he concludes that we are asserting that

the CG method is only applicable to linear systems obtained

from the PB-MOM. If we actually held this belief our under-

standing of the CG method would be poor indeed and Sarkar

would be quite correct in suggesting that we read his tutorial

paper. Actually the statement is taken out of context. If this

statement is read in context, it is quite clear that our intent was

to stress the fact that, in our method, the FFT-CGM is nothing

more than an efficient means of solving the matrix that we obtain

via the PB-MOM. From this we conclude that the errors we

observed in the transverse electric (TE) cylinder solutions cannot

be attributed to the FFT-CGM and that any fundamental prob-

lem with the pulse basis formulation will also plague our solu-

tions.

2) In paragraph six, we are accused of putting the “... blame

on a method [the CG method] rather than on an incorrect choice

of expansion and weighting functions . . . .“ This comment is

particularly unsettling since the main conclusion of our paper is

that the discontinuities introduced by the pulse basis produce

fictitious charge sources that degrade the accuracy of the numeric-

al solution for the TE illumination of dielectric cylinders. In

other words, we quite clearly put all the blame on the basis

functions. The only observation that we make concerning the CG

method is that the rate of convergence can be quite slow for the

matrix obtained from the PB-MOM for the TE polarization. This

is in contrast to the transverse magnetic (TM) polarization for

which adequate convergence is obtained in a number of iterations

far less than the number of unknowns. This is an important

consideration in the comparison of the relative efficiency of our

FFT-CG method and the finite-difference time-domain (FD-TD)

method. Recently, we have found that this problem can be

alleviated by replacing the pulse basis with the sine basis to be

described shortly. Apparently, use of the sine basis results in a

matrix with clustered eigenvalues and a smaller condition num-

ber. This results in rapid convergence of the CG iterations for

both the 2-D TE and 3-D dielectric scattering problems. Further

gains in numerical efficiency can be obtained by using the

biconjugate gradient method [14] as suggested by Sarkar.

3) The statement in paragraph six that our results would be

unchanged if Gaussian elimination were used was already

acknowledged by us. We quite clearly stated that ”... this method

of solving [the PB-MOM linear system] introduces no additional

error over more traditional methods such as LU decompo-

sition. . . .“

4) In comment 3, Dr. Sarkar states that we claim to be the

originators of the FFT-CG method. The fact is that the first

application of this combination to electromagnetic scattering

problems that we are aware of is [15]. However, we have never

claimed any special monopoly on the idea. The only place we

find the claim of novelty is in the first paragraph of %rkar et cd.

[4].



168 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 1, JANUARY 1988

Most of Sarkar’s remaining comments concern his distinction

between operator equations and matrix equations. In the next

section we will demonstrate that the method in [3] and [4] is a

matrix moment method in the sense that basis and testing func-

tions are preselected and employed to reduce the integral equa-

tion to a matrix equation. The only role that the CG method

plays in Sarkar’s algorithm is to solve this matrix equation. The

solution obtained would be unchanged if another method such as

Gaussian elimination were used.

Consider the Fredholm integraf equation of the first kind with

shift invariant kernel

y(x) = j’”’2 f(x’)g(x - x’) dx’, –:5X<;. (1)
– [./2

For the wire antenna problem, f is the unknown wire current, y

is the incident field excitation, g is the Green’s function, and L

is the wire length.

Because we seek a solution with finite support on [ – L/2, L/2],

the limits of integration can be extended to + m. Introducing the

support function

( O otherwise

we get the following problem: Find f(x)

[– 1,/2, L/2] that solves

with support on

Y(.Y) =f(x)Jm f(x’)g(x–x’)dx’. (2)
—m

The procedure for solving (2) by the moment method begins by

expanding f(x) in a finite-dimensional basis. The finite support

constraint on the solution can be enforced at this point by

selecting a finite support basis expansion (e.g., piecewise con-

stant, piecewise linear, etc.); however, in order to arrive at

Sarkar’s algorithm, we introduce the grid nodes illustrated in Fig.

1 and use the basis expansion

[
sin ~(x’–m A)

f(x’) =f(.x’) =+ ‘~’ r,,lf,l
1

“[
m(x’–rn A)

m=– M+l

‘]n A 2M–1 1
(3)

where the constraint f.,, = O for N – 1< Iml < M has been en-.,, ,,
forced by defining the support sequence tnl = t( rnA). Notice,

however, that (3) is periodic with period (2 M – 1) A. Thus, the

use of (3) introduces fictitious copies of the wire current. How-

ever, as M becomes large, the coupling between these copies is

reduced due to the decay of the Green’s function. Sarkar suggests

the arbitrary choice, M = 2 N. A means of eliminating these

fictitious copies altogether will be described shortly.

By a trivial step

where f; is the discrete Fourier transform (DFT) of the zero

x-u., X4 x“ x.-)

Fig. 1 (;comctrv of the equally spaced sample pcnnts used to define the

has,; cxparwr.m, eq. (3) ..,, = ),A, A = f./(2Iv – 1).

padded array ~,, defined as

m=– M+l

–M+lsk<M–l. (5)

Inserting (4) into (2) gives

(6)

where i& equals the continuous Fourier transform of g(x) sam-

pled at 27rk/(A(2M –l)).

To complete the numerical solution, the equality of (6) is

enforced at the grid nodes (point matching) to give the matrix

equation

‘“ ‘*k:~;+,fi~’’-’(k)’’kf’)‘7)
or

h = f,, DFT-”l{DFT{ tti,fwt }~~k } ,1. (8)

Equation (8) defines the algorithm used by Sarkar to compute the

matrix products needed in the implementation of the CG itera-

tions. In order to find an simplified expression for the matrix

equation implicit in (7), substitute (3) into (7) to get

+ M–1 M–1
~},—z

“’=2 M-1
~ tmlfn,g,e’(’~’( ’’-)’’)/(’~-l’ (9)

h=– M+lm-M+l

or simply

N–1

Y,, = ~ Xng,z--m -M+ls~I~M-l (10)
trz=– N+l

where g,, is the discrete kernel

Equation (10) is then the matrix equivalent of the algorithm

defined in (8). In Sarkar’s algorithm, the matrix equation (10) is

now solved iteratively by the conjugate gradient method. Rather

than exphcitly forming the Toeplitz matrix (10), the FFT al-

gorithm is used to rapidly compute the matrix products needed

during the CG iterations by utilizing the algorithm defined in (8).

The adjoint matrix products, which are also needed to implement

CG, can also be computed by simply replacing &, with its

complex conjugate in (8).

We have now shown that Sarkar’s algorithm can be derived by

applying the method of moments to (2) using the basis defined in

(3) and point matching to reduce the integraf equation to a

matrix equation. In Sarkar’s approach, the CG method is used

only as a means of solving the matrix equation (10). The same

result would be obtained if another method were used such as

Gmssian elimination. The advantage of using the CG method is

that only matrix products are needed in its implementation. This
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allows the use of the FFT by algorithm and obviates the storage

of the matrix.

From the following development it should now be clear that

Sarkar’s distinction between using the CG method to solve an

matrix equation versus an operator equation is meaningless. Also,

his claim that the basis is not preselected but evolves during the

iteration process is incorrect. It is true that at the k th step of the

CG method the iterate f k is found by minimizing the residual

error

llr~ll; =//,4f~ - J)[l:

over the Krylov set (see for example Axelsson [16])

Sk = {A*y, (A*@4*y,.. +4*’4)kA*y}.

However, this has nothing to do with the basis functions used to

discretize the integral equation into a matrix equation. As we

have shown, the preselected basis set used implicitly in Sarkar’s

approach is exactly that given in (3). This fact is obscured in his

development.

In [3] and [4], the claim is made that proof of the convergence

of the CG method is somehow a proof of the convergence of the

numericaf solution. This would certainly be true if the CG

method were applied directly to the continuous integral equation

without the intermediate step of discretization. Unfortunately

this is not possible and so the only alternative is to discretize the

continuous integraf operator into a finite-dimensional matrix,

Proofs concerning the convergence of the numerical solution

must certainly consider how well the basis expansion approxi-

mates the unknown solution in the limit as the sample interval,

A, goes to zero. An example of such a proof can be found in [17].

An important additional point needs to be made. If Sarkar had

noticed that his formulation (8) can be reduced to (10), he would

have realized that, in effect, the zero pad length M cart be limited

to infinity. Since (10) is in the form of a discrete convolution on

[– N + 1, N – 1], it can be solved by the FFT-CG method using

FFT’s of length 4N – 1 with no wraparound aliasing for arbi-

trarily large M. The calculation of the discrete kernel g. need be

computed only once using a single 2 M – 1 point FFT prior to the

iterative solution of (10). This allows the periodic copies of the

current to be separated by an arbitrarily large distance without

increasing the FFT length needed during the CG iterations.

Now consider what happens if we take the limit M + m.

Equation (3) then becomes

N–1
[

sin :( x’ – mA)

/(x’) = ~ fnlj,,
!

(12)

riL=-N+l :(x’-w A)

which is the well-known sine basis expansion. The advantages of

sine basis methods versus polynomial methods are discussed by

Stenger in [18]. In this monogram, Stenger derives a class of

sine-based numerical methods for problems ranging from inter-

polation and quadrature to the solution of partial differential

equations and integral equations. The utility of the sine basis for

the solution of scattering integral equations is further supported

by the work of Johnson et al. [19], in which the sine basis and

FFT are used to solve the acoustic scattering integral equations

that arise in ultrasound imaging.
The formula for the discrete kernel (11) limits to

A

where the * denotes the convolution operation. Thus, the use of

(10) with the kernel defined in (13) is equivalent to limiting M to

infinity, which removes the fictitious copies of the current. Equa-

tion (10) can then be solved with no wraparound aliasing using

4 N – 1 point FFTs and the CG method.

An important limitation of Sarkar’s algorithm occurs in the

2-D and 3-D electric field integral equation cases for which ~(k),

the spatiaf Fourier transform of the Green’s function, is singular

on the Ewald surface, /k 1= kO. This causes problems in the

evaluation of (11). It has been suggested that this problem can be

obviated by adding a small imaginary part to k. [13], [20]. Our

numericaf experiments indicate that this is a highly unsatisfactory

remedy. In particular, solutions obtained in this way for the 2-D

circular cylinder problem do not agree at dl with analytic solu-

tions. The importance of correctly including the contribution of

the scattered field due to this singularity is obvious in the light of

the well-known fact that the externally scattered field is com-

pletely determined by the transform of the current cm the Ewald

surface [21]. The problem with using (11) is that it consists of a

mid-point rule approximation of the continuous integral (13)

which has a singular integrand (for the 2-D and 3-D Green’s

functions). The slow convergence of the approximation (11) as M

goes to infinity means that very high resolution grids must be

used to obtain an accurate quadrature. It is indeed fortuitous that

Sarkar chose the wire antenna problem for his test case for which

such singularities do not exist. Fortunately, the sine basis method

does not suffer from this problem since the singularity is in-

tegrated analytically in (13). We have derived analytic expres-

sions for the 2-D and 3-D equivalents of (13) and have imple-

mented this approach for calculating scattering and absorption

by arbitrarily inhomogeneous lossy dielectrics. Comparison with

analytic solutions for concentrically layered spheres of biological

tissues exposed to a plane wave have verified the accuracy of the

method. We have also successfully solved inhomogeneous man

models embedded in a 72X24X 12 grid. Of these 20000 grid

nodes, 6000 define the inhomogeneous man models. The remain-

ing points are in air and fill out the cuboid grid on wlhich the 3-D

FFT operates. This then results in 18000 unknown electric field

values. Typical run times for this model are between 7 to 14

minutes on the Cray-2 supercomputer at the University of Min-

nesota. A complete description of the algorithm and results is in

preparation for publication [22].
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Comments on “A Method for Measurement of

Losses in the Noise-Matching Microwave Network

While Measuring Transistor Noise Parameters”

MARIANW POSPIESZALSKI

[n the abovel paper, expressions(l),(2), and(3) appear to be

correct only if the physical temperature Tti of the tuner is equal to

the standard temperature TO=290 K. The expression (1) for

T, # ~1 = 290 K should read

using the notation of the paper. Generally valid versions of

expressions (2) and (3) follow in a straightforward manner. The
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Flg 1 Equivalent circuit of a receiver with nourdeal isolator at lts input,

error caused by the limited validity of expressions (1), (2), and (3)

in the subject paper may be quite significant, even for room

temperature measurement. For instance, for the tuner losses of

1.5 dB (worst case in the example discussed), each kelvin of a

difference between physical temperature of a tuner and standard

temperature ~} will contribute 0,4 K of an error.

Also, the remaining nonreferenced expressions in the subject

paper (i.e., (5) through (9)), which deal with the noise tempera-

ture of a receiver with isolator at the input, are derived in the

Appendix ((Al) through (A14)) in an unnecessarily complicated

way. In order to demonstrate this point, let us refer to the

equivalent circuit of Fig. 1. This equivalent circuit is valid for a

receiver preceded by an isolator having Slz = O and a physical

temperature ~,. In this case, a nonideal isolator is modeled by a

cascade connection of lossless reciprocal two-port, followed by

an ideal isolator and Iossy reciprocal two-port.

It has been brought to the attention of the authors of the

subject paper [1] and also discussed in some greater detail in [2]

that at plane B (refer to Fig. 1), the noise parameters of such a

system are

Tu + Tmin
Tm,n=Tf(I’, =O), ropt = o, N=

45
. (2)

It follows immediately from the invariant properties of Tm,n and

N [3] that at plane A the noise parameters are

Tmin=~:(rg =r,*)=T:(rg= o), ropt = r,*,

. .
4q

(-l]

The relations (2) and (3) follow in a straightforward manner

from those published many years ago [4], [5]. The expressions (5),

(7), and (8) in the subject paper can be easily obtained by

substitution of noise parameters given by (3) into standard ex-

pression for equivalent noise temperature (noise figure).

The relations (3) also clearly demonstrate why, for a full noise

description of a receiver with isolator (,S12 = O) at the input, only

single noise measurement will suffice if the input reflection

coefficient r, and physical temperature of the isolator are known.
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I. PREMISE

Before replying in detail to the above comments, we would like

to reassure experimenters working in the field of transistor noise

measurements that the questions raised do not affect to any
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